Security Testing for Critical Systems in Software Testing

Introduction:

In today’s increasingly interconnected world, software systems are central to the functioning of businesses, governments, and industries. Many of these systems, such as financial applications, healthcare systems, defense technologies, and critical infrastructure, handle sensitive data or control essential processes. For such systems, security is paramount. A security breach can lead to data loss, financial damage, compromised operations, or even loss of life. Therefore, ensuring the security of critical systems through rigorous testing is an essential component of the software development lifecycle.

What is Security Testing?

Security testing is the process of evaluating a software application or system to identify vulnerabilities, weaknesses, or threats that could lead to unauthorized access, data leakage, or manipulation. It aims to protect the system from malicious attacks, prevent data breaches, and ensure that sensitive information remains secure.

Security testing for critical systems involves assessing how the software behaves in the presence of malicious actors, incorrect usage, or unexpected inputs, and ensuring that the system meets required security standards and compliance regulations.

Key Objectives of Security Testing for Critical Systems:

  1. Identify Vulnerabilities: Detect flaws or weaknesses that could potentially be exploited by attackers. These vulnerabilities may exist in the software, system architecture, or its integration with other systems.
  2. Ensure Data Protection: Critical systems often handle sensitive information. Security testing ensures that data privacy measures are in place and that information is encrypted, masked, or securely stored.
  3. Verify Authentication and Authorization: Strong mechanisms for user authentication and authorization are vital for preventing unauthorized access to critical systems. Security testing ensures that only authorized users can access sensitive parts of the system.
  4. Detect and Mitigate Threats: Identify potential threats, including common attack methods such as SQL injection, cross-site scripting (XSS), and denial-of-service (DoS) attacks. The goal is to ensure that the system is resilient to such threats.
  5. Compliance with Regulations: Many critical systems are subject to industry-specific regulations, such as HIPAA (for healthcare), GDPR (for data privacy), or PCI-DSS (for payment systems). Security testing ensures that the system complies with these standards.

Types of Security Testing for Critical Systems:

  1. Vulnerability Scanning: Automated tools are used to scan the system for known vulnerabilities. These tools compare the system’s components against a database of known security flaws and provide insights into any potential weaknesses.
  2. Penetration Testing (Pen Test): Penetration testing involves simulating real-world cyber-attacks to identify exploitable vulnerabilities. Ethical hackers (or penetration testers) attempt to gain unauthorized access to the system by exploiting weaknesses in its design, implementation, or configuration.
  3. Static Application Security Testing (SAST): SAST involves reviewing the source code of the application without executing it. It identifies vulnerabilities at the code level, such as insecure coding practices, poor input validation, or missing security controls.
  4. Dynamic Application Security Testing (DAST): DAST is performed while the application is running. It focuses on identifying vulnerabilities that occur during the operation of the application, such as improper handling of user inputs or weak session management.
  5. Threat Modeling: Threat modeling helps identify potential security risks early in the software design phase. This involves analyzing how an attacker might exploit weaknesses and how various parts of the system might be targeted.
  6. Security Code Review: A manual or automated review of the application’s code to detect any weaknesses or flaws related to security. This often includes checking for issues such as poor input validation, hardcoded passwords, or insufficient data encryption.
  7. Risk Assessment: Risk assessments identify potential security threats based on system architecture, external threats, and business impact. This includes determining the likelihood of attacks and the impact of those attacks on the organization’s operations.

Best Practices for Security Testing in Critical Systems:

  1. Shift Left Security: Security testing should start early in the development lifecycle, not just during the testing phase. Integrating security into the DevOps process (DevSecOps) ensures that security is embedded throughout the design, development, and deployment stages.
  2. Continuous Security Testing: Security testing shouldn’t be a one-time event but an ongoing process. With the rapid pace of new threats and vulnerabilities emerging daily, continuous testing and monitoring of the system’s security posture is critical.
  3. Use of Automation Tools: While manual penetration testing and code reviews are essential, automated tools can significantly enhance the speed and thoroughness of security testing. Tools like OWASP ZAP, Nessus, and Burp Suite can automate common security tests.
  4. Security Awareness and Training: Developers, testers, and other stakeholders involved in critical systems should be trained to understand common security risks and how to avoid them. This includes recognizing common attack vectors and following best security practices during development.
  5. Patch Management: Vulnerabilities in critical systems often arise from outdated software or libraries. Regular patch management and updates ensure that known vulnerabilities are addressed and patched promptly.
  6. Simulation of Real-World Attacks: Use red teams (simulated adversarial attackers) to conduct security exercises that mimic real-world attacks. These exercises help assess the effectiveness of security controls, the response to incidents, and the ability to mitigate breaches.
  7. Zero Trust Architecture: In a zero-trust model, no user or system is trusted by default, even if they are inside the corporate network. Implementing zero trust in critical systems ensures that every access request is verified and validated, reducing the risk of internal or external breaches.
  8. Logging and Monitoring: Critical systems must have comprehensive logging and monitoring mechanisms in place to detect suspicious activities in real time. Security testing should verify the effectiveness of these mechanisms in identifying and responding to threats quickly.
  9. Incident Response and Recovery Planning: Security testing for critical systems should also assess the system’s ability to respond to security incidents. This includes verifying incident response procedures and the robustness of disaster recovery and business continuity plans.

Challenges in Security Testing for Critical Systems:

  1. Complexity: Critical systems are often large, complex, and interconnected with other systems, making it challenging to conduct exhaustive security testing.
  2. Evolving Threats: The landscape of cybersecurity threats is constantly changing, and new attack methods are developed regularly. This requires continuous learning, adaptation, and testing.
  3. Resource Constraints: Comprehensive security testing can be resource-intensive. Many organizations may face budget or time constraints when trying to implement thorough security testing for critical systems.
  4. False Positives and Negatives: Security testing tools can sometimes produce false positives (indicating vulnerabilities where none exist) or false negatives (failing to detect actual vulnerabilities), requiring human intervention and expertise to interpret results correctly.

Conclusion:

Security testing for critical systems is a vital part of software testing. It ensures that software is resilient to cyber threats, protecting both sensitive data and the integrity of the system. Given the potential consequences of security failures, organizations must adopt a comprehensive and proactive approach to security testing, integrating it early into the development lifecycle, using the latest tools and techniques, and ensuring continuous monitoring. By doing so, they can minimize the risk of cyber-attacks, maintain the trust of their users, and meet regulatory compliance requirements, all while safeguarding the functionality and security of critical systems.

API Testing with C# and RestSharp

API testing is an essential part of the software development lifecycle, focusing on the communication and data exchange between different software systems. It verifies that APIs are functioning correctly and meeting performance, reliability, and security standards. Using C# with the RestSharp library simplifies the process of interacting with RESTful APIs by providing an easy-to-use interface for making HTTP requests.

Embracing Quality: A Deep Dive into Software Testing and Quality Assurance at Uttara University

As technology continues to evolve at a rapid pace, the demand for quality software has never been greater. In response to this need, I’m excited to announce that I will be leading a series of lectures on Quality Assurance (QA) and Software Testing at Uttara University under the EDGE project.

Why Quality Assurance Matters

Quality Assurance is more than just finding bugs; it’s about ensuring that software meets the highest standards of quality and reliability. With the increasing complexity of software applications, effective QA practices are essential for delivering products that not only meet user expectations but also perform well under real-world conditions.

Course Overview

Throughout this course, we will explore key concepts and methodologies in QA and software testing, including:

  1. Introduction to Quality Assurance: Understanding the principles of QA, its importance in the software development lifecycle, and the role of QA professionals.
  2. Testing Methodologies: Delving into various testing types such as unit testing, integration testing, system testing, and acceptance testing. We will also discuss manual vs. automated testing and when to use each approach.
  3. Test Planning and Design: Learning how to create effective test plans, design test cases, and establish testing criteria that align with project requirements.
  4. Defect Tracking and Reporting: Best practices for identifying, documenting, and communicating defects to ensure timely resolution.
  5. Tools and Technologies: An overview of popular testing tools (like Selenium, JUnit, and Postman) and how they can enhance the testing process.
  6. Real-World Applications: Case studies and practical exercises to apply the concepts learned and prepare students for real-world QA challenges.

Learning Outcomes

By the end of this course, students will be equipped with the knowledge and skills to:

  • Understand the critical role of QA in software development.
  • Develop comprehensive test plans and cases.
  • Utilize various testing tools effectively.
  • Analyze and report on testing outcomes to drive improvements.

Join the Journey

I am passionate about sharing my knowledge and experiences in QA and software testing. This course will not only provide theoretical insights but also hands-on experience that prepares students for careers in this vital field.

I look forward to engaging discussions, collaborative projects, and fostering a deeper understanding of quality assurance among aspiring software professionals.

Stay tuned for updates, and let’s embark on this journey towards achieving excellence in software quality together!

Using Paste Special in Visual Studio to Generate C# Classes from JSON

Visual Studio offers a feature called “Paste Special” that allows you to easily generate C# classes from JSON objects. This is particularly useful when working with web APIs or any JSON data, as it automates the creation of data models that match the JSON structure.

  1. Copy the JSON Object:
    • Ensure you have your JSON object copied to the clipboard. For example
  1. Open Visual Studio:
    • Launch Visual Studio and open the project where you want to add the new classes.
  2. Add a New Class File:
    • In Solution Explorer, right-click on the folder where you want to add the new class.
    • Select Add > New Item….
    • Choose Class and give it a meaningful name, then click Add.
  3. Use Paste Special:
    • Open the newly created class file (e.g., MyClass.cs).
    • Delete any default code in the class file.
    • Go to Edit > Paste Special > Paste JSON as Classes.
  4. Review the Generated Code:
  5. Visual Studio will automatically generate C# classes that correspond to the JSON structure. For the example JSON, it would generate something like this:

How to input value into an international number text box in selenium

Below is the text box and the corresponding HTML:

If I used sendkeys, sometimes it may not working

driver.findElement(By.name(“mainphone”)).sendKeys(“(02)2222-2222”);
driver.findElement(By.id(“mobilephone”)).sendKeys(“05-5555-5555”);

If sendkeys() methods are not working then use following two ways to input text:

Before sendkeys() use click() method to click inside textfield i.e:

driver.findElement(By.name("mainphone")).click();
driver.findElement(By.name("mainphone")).sendKeys("(02)2222-2222");   
driver.findElement(By.id("mobilephone")).click();
driver.findElement(By.id("mobilephone")).sendKeys("05-5555-5555"); 

Open chrome mobile emulator with selenium c#

Hi guys, I am going to run a test mobile emulator with selenium and VS C#

Import

using System;
using System.Threading;
using NUnit.Framework;
using OpenQA.Selenium;
using OpenQA.Selenium.Support.UI;
using OpenQA.Selenium.Chrome;

Driver Utils Class

First of all delclaring the webdriver, which will be used for open specfic browser

namespace SeleniumAutomation
{
[TestClass]
public class Setup
  {
       IWebDriver webDriver;
  }
}

Open Chrome

[Test]
public void Open_Browser()
{
 webDriver = new ChromeDriver();

}

Open Chrome Mobile Emulator

 [Test]
 public void Mobile_Emulator_Browser()
 {
 ChromeOptions chromeCapabilities = new ChromeOptions();
 chromeCapabilities.EnableMobileEmulation("Pixel 5");
 webDriver = new ChromeDriver(chromeCapabilities);

 }

I think it will be helpful to run chrome in mobile emulator

IoT Testing

There are more connected devices than ever before as IoT (Internet of Things) technology is gaining traction. IoT testing is conducted to test IoT technology based devices. The various types of testing for IoT systems are as follows:

Usability Testing – To test the usability of an IoT system

Compatibility Testing – To check the compatibility of devices in IoT system

Reliability & Scalability Testing – Simulation of sensors utilizing virtualization tools

Data Integrity Testing – To validate the integrity of data

Security testing – To validate the user authentication process and data privacy controls

Performance Testing –  To test the performance of the connected devices in an IoT network

Selenium C# How to Generate Extent Reports

Reports play a fundamental role when it comes to TESTING. Tester can now know the real-time reports of test suit execution. Reports made ease to know the ratio of Pass? Or Fail? Post-test suit execution and it is the only documentation to know about test execution results.

Everyone wish to see the detailed description of the test results. Don’t you? here is the solution for it. And, let us see how these reports can be achieved? in Selenium C# – NUnit framework automation testing.

To achieve detailed test execution results as HTML reports we need to rely on third party tool called => Extent Reports. These reports provide decent narration of test execution results and are depicted in PIE chart.

How to Reference Extent Reports in MS Visual Studio

Extent Reports can be directly referenced via NuGet Gallery:

Step 1) Project> Manage NuGet Packages

Step 2) In the next window

  1. Search for ExtentReports
  2. Select the search result
  3. Click Install

Step 3) Install selenium support from NuGet package

Step 3) Click ‘I Accept’

Step 4) Create a new C# class with the below code for Extent Reports.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

using OpenQA.Selenium;
using OpenQA.Selenium.Support.UI;
using OpenQA.Selenium.Chrome;

using NUnit.Framework;
using NUnit.Framework.Interfaces;
using NUnit;

using AventStack.ExtentReports.Reporter;
using AventStack.ExtentReports;
using System.IO;

namespace RnD
{
    [TestFixture]
    public class TestDemo1
    {
        public IWebDriver driver;

        public static ExtentTest test;
        public static ExtentReports extent;

        [SetUp]
        public void Initialize()
        {
            driver = new ChromeDriver();
        }


        [OneTimeSetUp]
        public void ExtentStart()
        {
            
            extent = new ExtentReports();
            var htmlreporter = new ExtentHtmlReporter(@"D:\ReportResults\Report" + DateTime.Now.ToString("_MMddyyyy_hhmmtt") + ".html");
            extent.AttachReporter(htmlreporter);

        }



        [Test]
        public void BrowserTest()
        {
            test = null;
            test = extent.CreateTest("T001").Info("Login Test");

            driver.Manage().Window.Maximize();
            driver.Navigate().GoToUrl("http://testing-ground.scraping.pro/login");
            test.Log(Status.Info, "Go to URL");

            //provide username
            driver.FindElement(By.Id("usr")).SendKeys("admin");
            //provide password
            driver.FindElement(By.Id("pwd")).SendKeys("12345");

            try
            {
                WebDriverWait wait = new WebDriverWait(driver, TimeSpan.FromSeconds(1));
                wait.Until(ExpectedConditions.ElementIsVisible(By.XPath("//h3[contains(.,'WELCOME :)')]")));
                //Test Result
                test.Log(Status.Pass, "Test Pass");

            }

            catch (Exception e)

            {
                test.Log(Status.Fail, "Test Fail");
                throw;

            }
        }

        [TearDown]
        public void closeBrowser()
        {
            driver.Close();
        }

        [OneTimeTearDown]
        public void ExtentClose()
        {
            extent.Flush();
        }
    }
}

Post running test method, the test execution report looks as shown below: